

Dan Bachen – Sr. Zoologist

<u>DBachen@mt.gov</u>

406-444-3586

Alexis McEwan – Zoologist

AMcEwan@mt.gov

Bo Crees—Avian Specialist BCrees@mt.gov

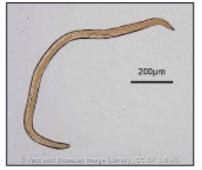
Zoology Program Update
Dan Bachen – December 11th, 2025

Representing Montana's Animal Taxa

652 VERTEBRATES

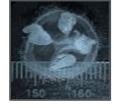
191 Molluscs

2,399 734 2,399 539


6,858 Arthropods → 12-15,000??

36 Annelids

12 PLATYHELMINTHES


31 Nematodes

4 PORIFERANS

9 ROTIFERS

2 CNIDARIA

23 Tardigrades

NEMATOPHORA? BRYOZOA?

NEMERTEA?

ENTOPROCTA?

GASTROTRICHA?

~8,000 SPECIES...A LONG WAY TO GO!

Increasing Invertebrate Information

- Partnered with invertebrate experts
 - Dave Stagliano, 500 aquatic invertebrates
 - Marian Lyman, 300 moths
 - Xerces Society, all native bumble bees
- Assessed:
 - Taxonomy
 - Occurrence data
 - Range polygons
 - Predicted Habitat Models
 - Threats
 - Host Plant Relationships
- Status Rank Assessments
 - Bombus complete
 - Targeting completion of aquatic invertebrates, assessed moths and butterflies over next few years
- How would you use host plant information?

Projects

- Northern Myotis
 - No confirmed captures*
- NABat
 - -95 cells, 376 sites
 - Upload of data 2020-2024 to National NABat portal completed
- SOC Bioacoustics
 - Developing capacity to analyze bird acoustic data

Updates to Species Names

Birds

- Warbling-Vireo split to Western (Vireo swainsoni) and Eastern Warbling-Vireo (Vireo gilvus)
- Accipiter to Astur
 - Cooper's Hawk Astur cooperii
 - American Goshawk Astur atricapillus

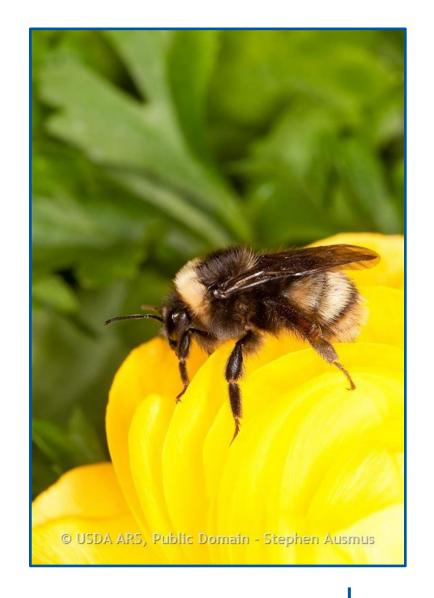
Mammals

- Hayden's Shrew to Prairie Shrew
- Water Vole to North American Water Vole

Fish

- Mountain Sucker (Catostomus platyrhynchus) to Plains Sucker (Pantosteus Jordani)
- Cutthroat trout now two species
 - Rocky Mountain Cutthroat Trout (Oncorhynchus virginalis)
 - West Slope Cutthroat Trout (Oncorhynchus lewisi)

Federal Status Updates


US Fish and Wildlife Service:

- Pollinators status under review
 - Regal Fritillary
 - Western Bumble Bee
 - -Suckley Cuckoo Bumble Bee
 - lowa Skipper
- Bats status under review
 - Little Brown Myotis
 - Hoary Bat

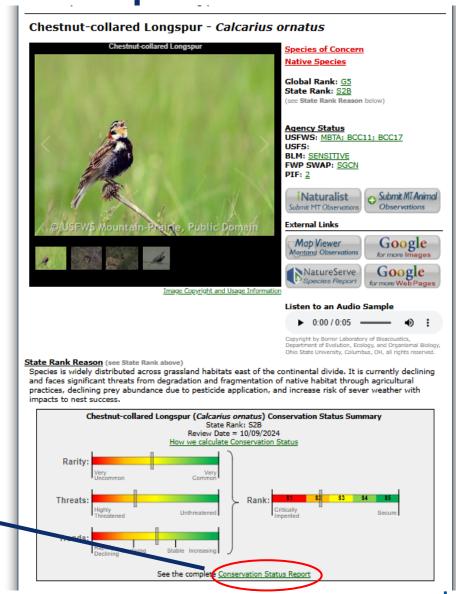
Montana Status Updates

- Invertebrates
 - Bumblebees are ranked
 - -SOC
 - Suckley's Cuckoo Bumble Bee (S2)
 - Yellow-banded Bumble Bee (S2)
 - Western Bumble Bee (S2)
 - American Bumble Bee (S3)
 - -PSOC
 - Indiscriminate Cuckoo Bumble Bee (\$3\$4)
- No Adjustments to vertebrates
 - Pending SOC Meeting spring 2026
- Revised SGCN list from SWAP available

Ranking Database Updates

- Vertebrates are done!
- Reports posted on Field Guide
- Upcoming Ranking Efforts
 - Moths
 - Aquatic invertebrates
- Integrate SWAP threats

2024-04-23


Range Extent

S: 254055.2 km²

Chestnut-collared Longspur (Calcarius ornatus) **Conservation Status Rank Summary** October 9, 2024 For details on assessment and ranking methodology, see: Conservation Status Assessment Definitions, Process, Rank Factors, and Calculation of State Ranks for Montana Species **Rarity and Trends** Date Data Rank Factor Value Score Comments Assessed Source Rarity MTNHP

4.710

Range

Summary of Conservation Status Rank Factors for Species in Montana

The NatureServe Network uses <u>standardized protocols</u> to assess the conservation status of species and habitats at global and subnational scales. This flexible assessment protocol evaluates rank factors in three major categories:

- Rarity how widespread and/or common the species or habitat is currently
- Trends trends in the rarity factors over the last 10 years or 3 generations (short term) or 200 years (long term)
- Threats the severity, scope, timing, and overall impact of anthropogenic or natural threats

See scoring and information sources for these rank factors for individual species in Montana Field Guide accounts.

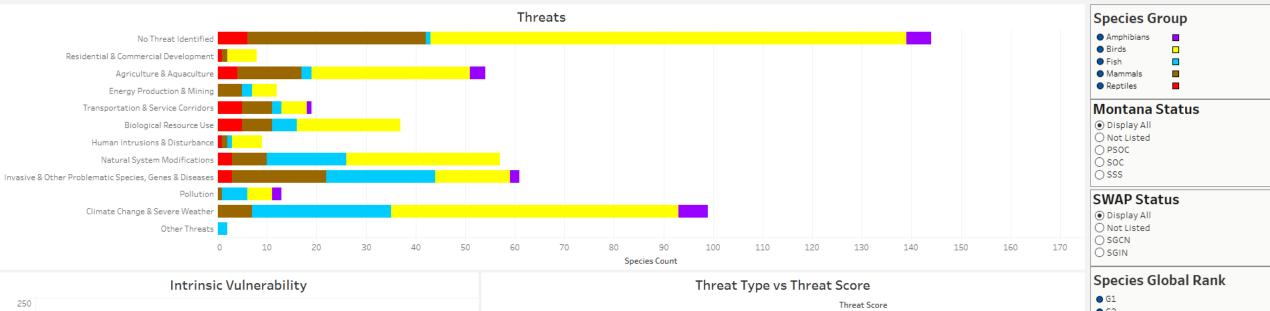
The links below allow you to explore patterns in conservation status rank factor scoring across taxonomic groups for Rarity, Trends, and Threats as well as between these major rank factor categories to allow natural resource managers to prioritize limited funding on conservation actions that address multiple species and habitats at a time.

Choose a category below to begin:

- See this Introductory Video
- . Click "Refresh Data in this View" at bottom left to reset filters or if pop-up views are frozen
- Click <u>here</u> for how we assign conservation status rank factors and ranks

Explore by Rarity

Explore by Trends Explore by Threat Explore by
Threat Impact and Short-term Trend



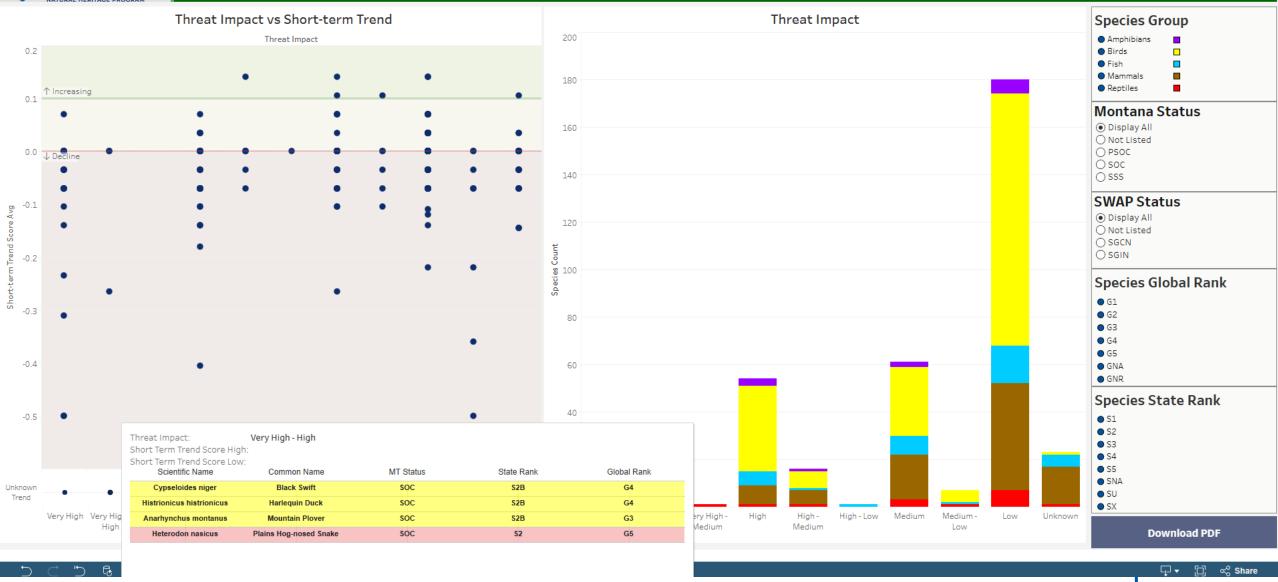
MONTANA STATE LIBRARY NATURAL HERITAGE PROGRAM

Conservation Status - Threats

*See scoring and information sources for these rank factors for individual species in Montana Field Guide accounts.

- G2
- G3
- G5
- GNA GNR

Species State Rank

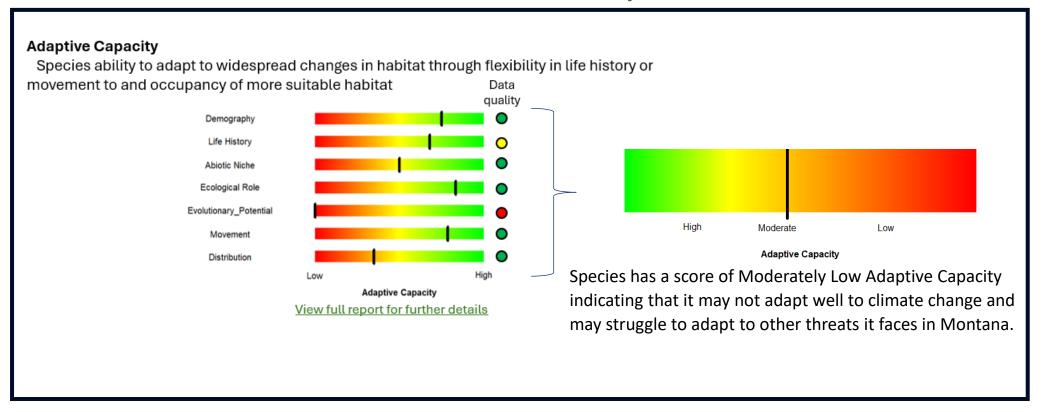

- S1
- S3
- S4
- S5 SNA
- SU

Download PDF

Conservation Status - Threat Impact and Short-term Trend


Return to Main Page

*See scoring and information sources for these rank factors for individual species in Montana Field Guide accounts.


Adaptive Capacity

- Capacity of a species to adapt in situ or move to find suitable habitat
- Based on NatureServe and USGS methods
- Data:
 - Distribution
 - Life History and Ecology
 - Applicable to landscape level change
- Provides insight into how managers can support species
- Vertebrates completed in 2026

Adaptive Capacity

Field Guide Summary

Report Examples

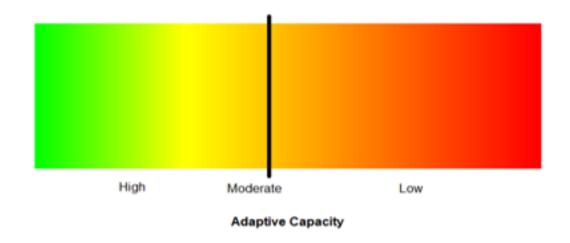
Movement

Factor	Adaptive Capacity	Score	Comments		
Dispersal Syndrome	Low	4	Swifts show high nest site fidelity, but have		
			been documented to disperse to new sites		
			if previous sites are no longer suitable		
Dispersal Distance	Moderate- High	1	species has substantial movement		
			capability, but exhibits a moderate to high		
			degree of site fidelity and has very limited		
			existing or potential habitat within the		
			assessment area		
Dispersal Phase	High	0	Species may disperse to new nest sites		
			throughout its life		
Site Fidelity	Low	4	Species has high fidelity to nest sites		
Migration Frequency	High	0	Annual migration		
Migration Demography	Low	4	All individuals migrate in Montana		
Migration Timing	High	0	Migration cues are thought to be biotic		
			and abiotic and are likely flexible.		
Migration Distance	Low	4	Species overwinters in central and South		
			America		
17 total points / 32 possible points = 0.53					

Low AC High AC

Demography

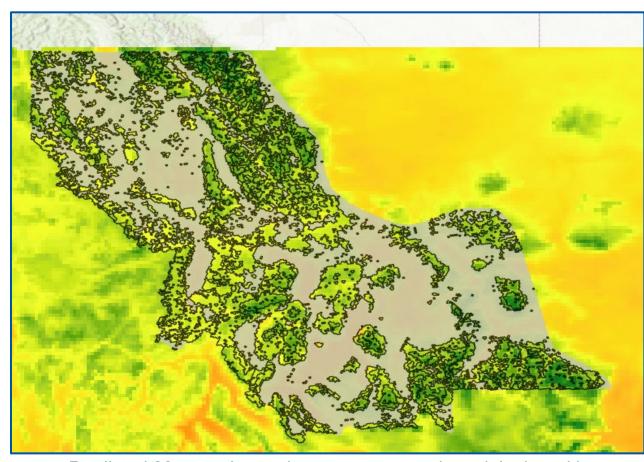
Factor	Adaptive Capacity	Score	Comments			
Life Span	Moderate-Low	3	Species can live between 10-20 years			
Generation Time	Moderate-High	1	Generation time is likely between 3-5 years			
Age of Sexual Maturity	Moderate	2	Species matures in 3-5 years (~1/3 of lifespan). Assessed as Moderate but could be High.			
Age Structure	Moderate	2	Poorly documented but populations may have a relatively balanced age structure			
Recruitment	Unknown	-	Unknown			
8 total points/ 16 possible points = 0.5						



Low AC High AC

Calculation of Adaptive Capacity

The adaptive capacity score of a species is calculated as the sum of each module score.


Module	Score	
Distribution	0.35	
Movement	0.53	
Evolutionary Potential	0.88	
Ecological Role	0	
Abiotic Niche	0.7	
Life History	0.34	
Demography	0.5	
Sum = 3.3		

Black Swift has a score of Moderately Low Adaptive Capacity indicating that it may not adapt well to climate change and may struggle to adapt to other threats it faces in Montana.

Spatial Threats

- Threat data are available
- Threats have a spatial component
- Combine predicted habitat suitability with threat exposure layers
- Identify where threats are most likely to impact species
- Potential Spatial Threats
 - Climate change exposure
 - Fire
 - Habitat conversion
 - Urbanization
 - Invasive species
 - Others?

Predicted 20-year change in temperature and precipitation with American Pika Predicted Habitat Model overlayed. Warmer colors are more different from current conditions

Predicted Suitable Habitat Model

Black Swift (Cypseloides niger) Predicted Suitable Habitat Modeling

Distribution Status: Migratory Summer Breeder State Rank: <u>S1B</u> (Species of Concern) Global Rank: <u>G4</u>

Modeling Overview

Created by: Braden Burkholder Creation Date: March 30, 2022 Evaluator: Dan Bachen Evaluation Date: April 4, 2022

Inductive Model Goal: To predict the current distribution and relative suitability of breeding habitat for Black Swift at large spatial scales across its presumed current breeding range in Montana.

Inductive Model Performance: The model appears to adequately reflect the current distribution and relative suitability of breeding habitat for Black Swift at larger spatial scales across its presumed current breeding range in Montana. Evaluation metrics indicate an acceptable model fit and the delineation of habitat suitability classes is well supported by the data.

Inductive Model Output: http://mtnhp.org/models/files/Black_Swift_ABNUA01010_20220330_modelHex.lpk

Deductive Model Goal: To represent the ecological systems commonly and occasionally associated with Black Swift during the breeding season, across its presumed current breeding range in Montana.

Existing Products

Conservation Status Rank

Black Swift (Cypseloides niger)
Conservation Status Rank Summary

October 30, 2025

For details on assessment and ranking methodology, see: <u>Conservation Status Assessment Definitions, Process,</u>
<u>Rank Factors, and Calculation of State Ranks for Montana Species</u>

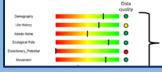
Rarity and Trends

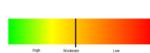
Rank Factor	Date Assessed	Value	Score	Data Source	Comments		
Rarity							
Range Extent	2024-05-13	S: 71766.5 km²	3.930	MTNHP Range Maps	None		
Area of Occupancy	2024-05-13	527 4km² cells	4.130	MTNHP Modeling	None		
Number of Occurrences	2024-05-13		2.750	MTNHP Databases	around 50 waterfalls with birds		
				MT			

Comprehensive Species Conservation Report

Single source for all conservation data and assessments

Adaptive Capacity

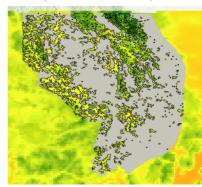

Adaptive Capacity of Black Swift (<u>Cypseloides niger</u>)


Adaptive Capacity refers to the intrinsic ability of a species to adapt to predicted changes in its environment. This assessment scores species on 37 species or population attributes documented in the scientific literature or with local research across seven categories: distribution, movement, evolutionary potential, ecological role, abiotic niche, life history, and demography (Appendix A: Category Definitions and Scoring). Natural resource managers and others can then use these assessments to understand a species vulnerability to a variety of environmental stressors and identify and prioritize the most effective management strategies for increasing a species' resilience to those stressors. The methodology to assess adaptive capacity is an extension of NatureServe's climate change vulnerability index that was developed by Nature Serve in partnership with the US Geological Survey.

The assessment is conducted over 37 categories organized within 7 modules. Within each module categories are scored from High adaptive capacity (0 points) to Low adaptive capacity (4 points) and the proportion of points scored for each module is then summed to determine the species' adaptive capacity. Note that the scoring may be counterintuitive as high adaptive capacity values have low point scores while low values have high point scores. To make visualization more intuitive, slider bar figures are inverted.

Summary

Species has a score of Moderately Low Adaptive Capacity Indicating that it may not adapt well to climate change and may struggle to adapt to other threats it faces in Montana.



Future Products

Spatial Threats

Black Swift (<u>Cypseloides niger</u>) Spatial Threats Report

