Assessment of Bridges in Eastern Montana to Identify Active Season Bat Roosts

Rachel Hopkins (Carroll College)

D. Grant Hokit (Carroll College) Dan Bachen, Montana Natural Heritage Program Bryce Maxell (Montana Natural Heritage Program)

Importance of Bats

- Important roles as pollinators, insecteaters (Boyles et al. 2011; Whitaker 1995)
- Reduction of agricultural pests (Boyles et al. 2011)
- \$3.7 billion to \$53 billion annually for agricultural industry (Boyles et al. 2011)

Threat of White-Nose Syndrome

- Infectious disease caused by the fungus, *Pseudogymnoascus* destructans
- Characteristic white hyphae on muzzle/wings
- Usually fatal
- 98% mortality in some sites (Turner et al. 2011)
- >5 million deaths in E. US and Canada (Frank et al. 2014)

Citation: White-nose syndrome occurrence map - by year (2017). Data Last Updated: 10/12/2017. Available at: https://www.whitenosesyndrome.org/resources/map.

Pallid Bat (Antrozous pallidus)

Big Brown Bat (Eptesicus fuscus)

Spotted Bat (Euderma maculatum)

Silver-haired Bat (Lasionycteris noctivagans)

Eastern Red Bat (Lasiurus borealis)

Townsend's Big-eared Bat

(Corynorhinus townsendii)

Hoary Bat (Lasiurus cinereus)

California Myotis (Myotis californicus)

Western Small-footed Myotis (Myotis ciliolabrum)

Little Brown Myotis (Myotis lucifugus)

Northern Myotis (Myotis septentrionalis)

Fringed Myotis (Myotis thysanodes)

Discover Montana's Wildlife discover, preserve, protect

Long-legged Myotis (Myotis volans)

Long-eared Myotis (Myotis evotis)

Yuma Myotis (Myotis yumanensis)

For more information on all of Montana's native species visit the Montana Field Guide <u>http://fieldguide.mt.gov</u>

Michael Durham/Minden Ridures/Bat/Conservation International

Montana

Montana Fish.

Wildlife & Parks

Thanks to the contributing photographers, editors, and sponsors that made this poster possible!

Natural Roosting

- Trees/snags
- Rock outcrops
- Caves
- Rock fissures
- Talus slopes

Artificial Roosting

Mines, buildings, sheds, barns, bat boxes, bridges

Big Brown Bat (Eptesicus fuscus)

Long-eared Myotis (*Myotis* evotis)

Fringed Myotis (*Myotis thysanodes*)

Hoary Bat (*Lasiurus cinereus*)

Little Brown Myotis (*Myotis lucifugus*)

Western Small-footed Myotis (*Myotis ciliolabrum*)

Main Objectives

- Identify locations of active season roosts for further monitoring
- Establish baseline knowledge about bat roosting preferences

Specific Questions for Analysis

- How does bat use of bridges differ by decking material?
- How does the presence or absence of ideal crevices affect bat use of bridges?
- How does bat use of bridges in Eastern Montana compare to bat use throughout the state?
- What species are using bridges as roosts?

Field Methods

- Inspect underside of bridge
- Classify by roost type
 - Day
 - Night
 - Maternity
 - None
- Record additional information (structure, habitat, etc.)

Previous Bridge Surveys

Bridges I surveyed

Roost Types

No presence/sign: Undetected

Droppings or urine Stains: Night Roost **Bats present: Day Roost**

Presence of young: Maternity Roost

Amie Shovlain

Ellen Whittle

Large dropping accumulations and/or urine stains obvious and widespread

Dropping accumulations several inches thick in several locations. Roosting evident throughout structure.

Ideal Crevices

Data Analysis Methods

- Contingency analysis
- Graphical comparison
- Genetic Species Identification (National Genomics Center for Wildlife and Fish Conservation)

Decking Material and Roost Type

Results

- Most bridges do not have ideal crevices
- Not necessary for bat use in general
- Contingency analysis
 P<0.108

Ideal Crevices and Bat Use

Bat use detected
Bat use not detected

Results

- Maternity roosts only in bridges with ideal crevices
- Most day roosts in bridges with ideal crevices
- Many night roosts in bridges without ideal crevices
- Contingency analysis
 - P<0.00001

Ideal Crevices and Roost Type

Bat Species

Bat Species Locations

Legend

- Big Brown Bat
- Little Brown Myotis
- Long-eared/Fringed Myotis
- ★ Northern Myotis
- × Western Small-footed Myotis

Conclusions

- Data generally support earlier findings (Hendricks et al. 2005; Whittle 2015)
- Widespread use of bridges as roosts (56%)
- Concrete most numerous type available for roosts
- Night roosts most numerous type of roost--Selection for night roosts different than selection for day/maternity roosts

Conclusions

- Wood vs. concrete for maternity roosts
- More bridges with bat friendly designs
- Northern Myotis—first time documented using bridge as roost
- Greatly increased known roosts—no prior bridge surveys in this area
- Bridge surveys efficient method
- Next area: Highline

Questions?

