#### Understanding the Status of Montana's Bat Species Using Acoustic Data

Dan Bachen<sup>1</sup>, Christian Stratton<sup>2</sup>, Shannon Hilty<sup>3</sup>, Alexis McEwan<sup>1</sup>, Emily Almberg<sup>3</sup>, Kathi Irvine<sup>4</sup>, Kristina Smucker<sup>3</sup>

<sup>1</sup>Montana Natural Heritage Program, Montana State Library

<sup>2</sup>Montana State University

<sup>3</sup>Montana Fish Wildlife and Parks

<sup>4</sup>Northern Rocky Mountain Science Center, US Geological Survey



USFS Meeting September 9<sup>th</sup>, 2024

#### **Bats of Montana**



Pallid Bat (Antrozous pallidus)



Townsend's Big-eared Bat (Corynorhinus townsendii)



Big Brown Bat (Eptesicus fuscus)



Spotted Bat (Euderma maculatum)



Silver-haired Bat (Lasionycteris noctivagans)



Eastern Red Bat (Lasiurus borealis)



Hoary Bat (Lasiurus cinereus)



California Myotis (Myotis californicus)



Western Small-footed Myotis (Myotis ciliolabrum)



Long-eared Myotis (Myotis evotis)



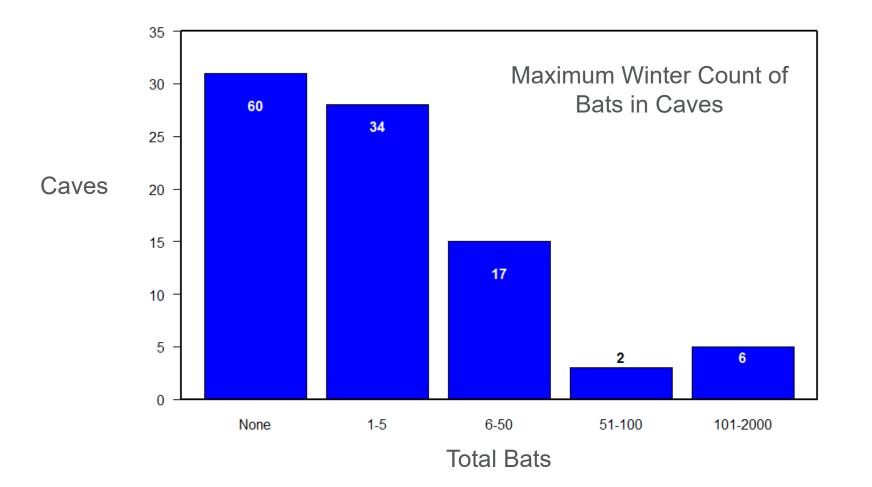
Little Brown Myotis (Myotis lucifugus)



Northern Myotis (Myotis septentrionalis)

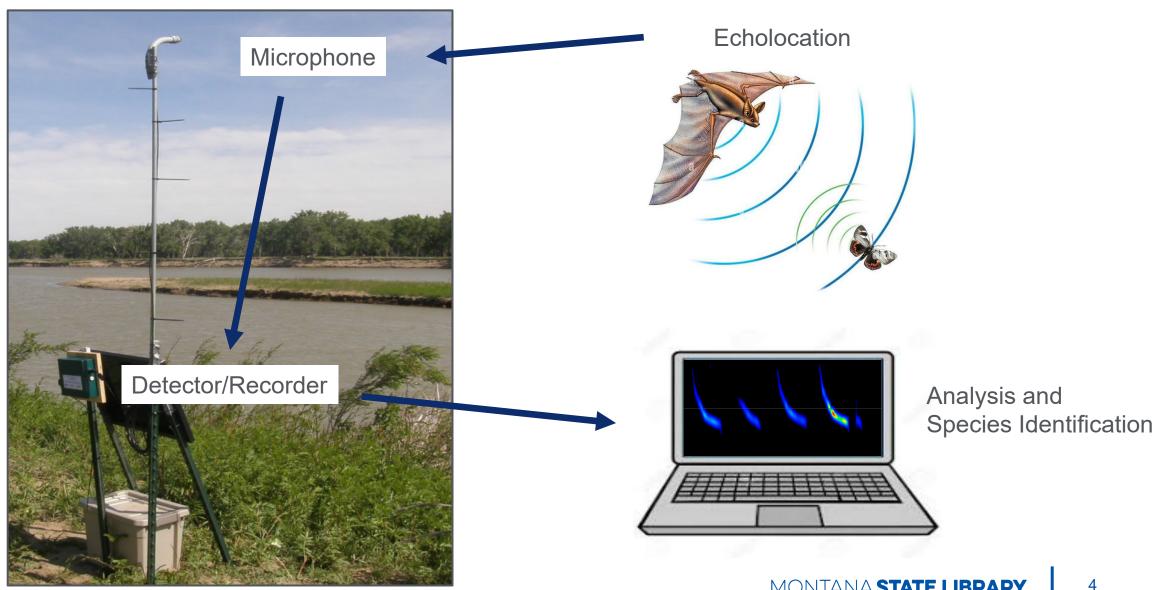


Fringed Myotis (Myotis thysanodes)

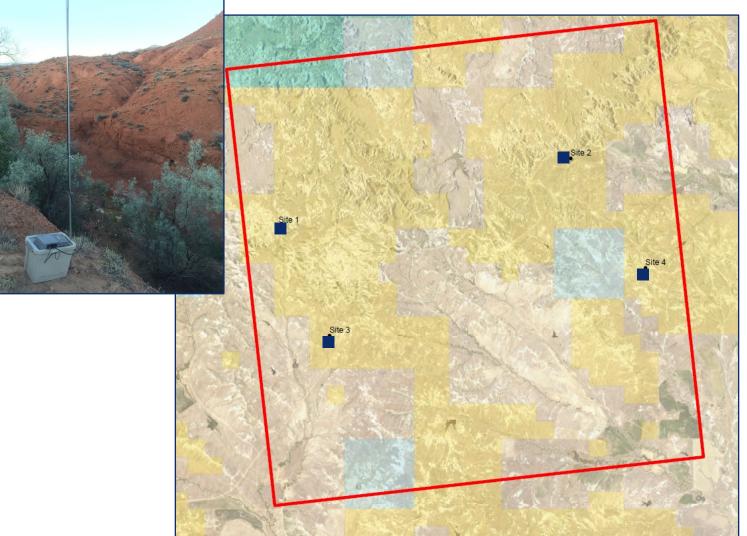



Long-legged Myotis (Myotis volans)




Yuma Myotis (Myotis yumanensis)

### Monitoring Challenges in Montana




3

## **Acoustic Bat Detection**



### NABat Program Implementation in Montana



#### Survey goals:

 Assess species present within grid cell

#### **Protocols:**

- 4 sites within the cell
- 4 nights of survey per site **Deployed at:**
- Water sources
- Roosts
- Foraging areas

## NABat Program Implementation in Montana

- 122 Cells surveyed
- 1476 sites assessed
- 4 seasons of data collected (2020-2023)
- 3 Million + call sequences recorded
- 13 species confirmed\*



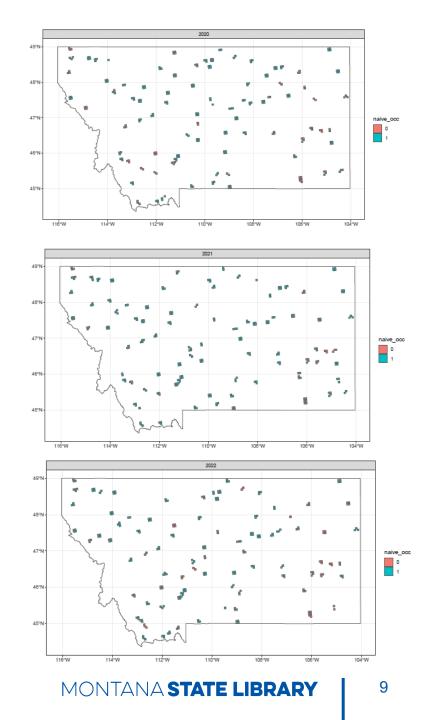
6

Myyu 8 of 17

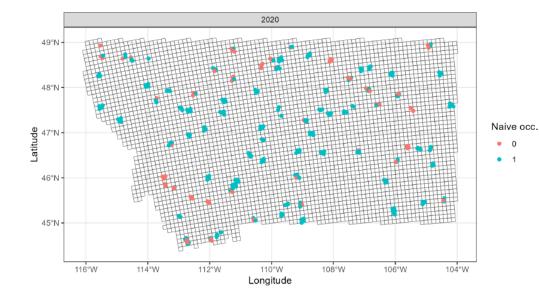
## Data Processing

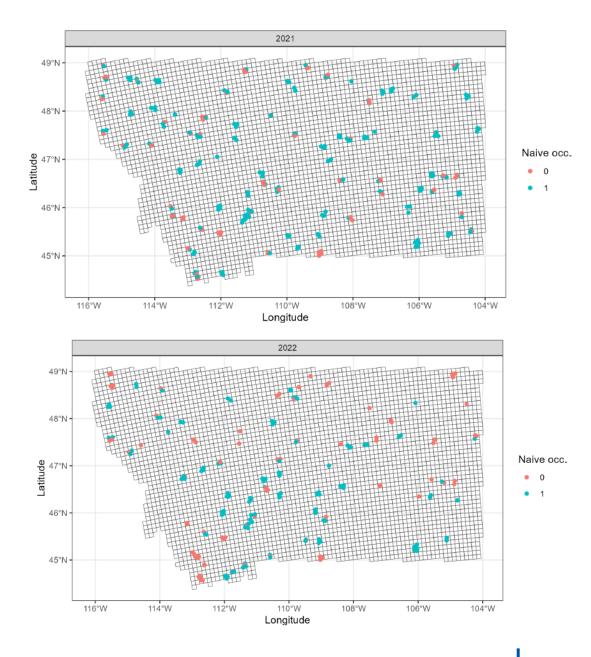
For each call sequence:

- Call attributes (auto-classifier)
- Proposed call identification to species (auto-classifier)
- Hand confirmation of classifier accuracy and species identification


### Species specific Occupancy Models

- National NABat Analyses for Species Status Assessments
- State Specific for ESA listed/proposed species
  - Species:
    - Northern Long-eared Bat (a.k.a Northern Myotis, *M. septentrionalis*)
      - Species poorly suited to acoustic analysis
    - Little Brown Myotis
    - Hoary Bat
  - Models:
    - Species detection/ non-detection data at 2 of 4 nights per detector site
    - 8 detection periods within each cell
    - Occupancy at cell level by year


### Little Brown Myotis


- Cell Occupancy change 2020-2022
- Naïve Occupancy similar through all years

| Naive occ. | Year    | Count |
|------------|---------|-------|
| 0          | 2020.00 | 79    |
| 1          | 2020.00 | 250   |
| 0          | 2021.00 | 48    |
| 1          | 2021.00 | 280   |
| 0          | 2022.00 | 82    |
| 1          | 2022.00 | 245   |



### Hoary Bat





## Hoary Bat

- USGS analysis
- Occupancy from NABat monitoring from 2020-2022
- Decline in occupancy observed in 2022
- Plan to rerun with 2023 and 2024 data

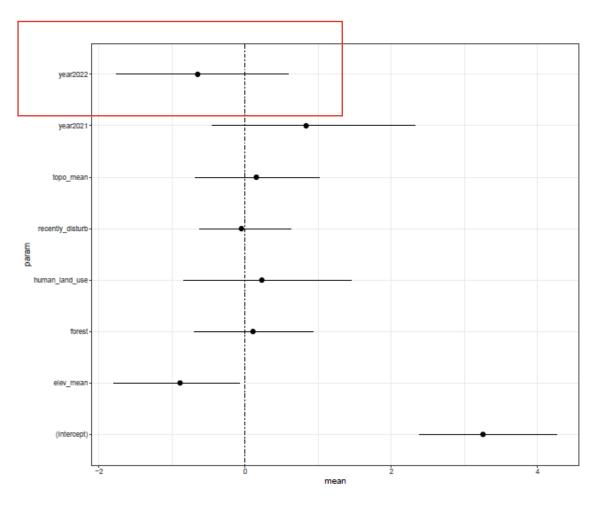



Figure 20: Ninety-five percent credibility intervals for the coefficients in the occupancy portion of the model on the logit scale.

# **Modeling of Call Counts**

- Motivation: Occupancy may not change despite significant declines in population at sites
- Solution: Use activity data as a indices of abundance within cells
  - Activity: Number of calls recorded by a species or species group within a given night

## Challenges Using Acoustic Data for Monitoring

- Proposed species ID is often incorrect at the species level
- Hand confirmation of species not possible for every call
- Number of calls ≠ Number of bats

#### However

 Call sequence attributes are assigned to calls and almost always correct

|                    |      | Suggested ID |      |      |       |                       |                |
|--------------------|------|--------------|------|------|-------|-----------------------|----------------|
|                    |      | LACI         | LANO | EPFU | No ID | Proportion<br>Correct | Total<br>Calls |
| Species<br>ecorded | LACI | 11           |      | 1    | 6     | 0.92                  | 18             |
|                    | LANO | 4            | 12   | 7    | 12    | 0.52                  | 35             |
|                    | EPFU | 4            | 1    | 30   | 16    | 0.86                  | 51             |

## Threshold Approach to Identify WNS Species California Myotis

Yuma Myotis Western Small-footed Myotis Long-legged Myotis Little Brown Myotis Northern Myotis Eastern Red Bat Long-eared Myotis Fringed Myotis

Not WNS susceptible WNS Susceptible

Spotted Bat

8 kHz

34 kHz

50kHz

14

Average Characteristic Frequency

**Big Brown Bat** 

Silver-haired Bat

**Pallid Bat** 

**Hoary Bat** 

### Status quo modeling

#### • Step 1

- Model Pd data
- Obtain summary of *Pd* occurrence at sampled acoustic locations
  - ex. "plug-in" and "prior" methods (Cameletti et al. 2019)

#### Step 2

Model bat relative activity data and assess the impact of *Pd* on activity via regression analysis

### Towards a new model

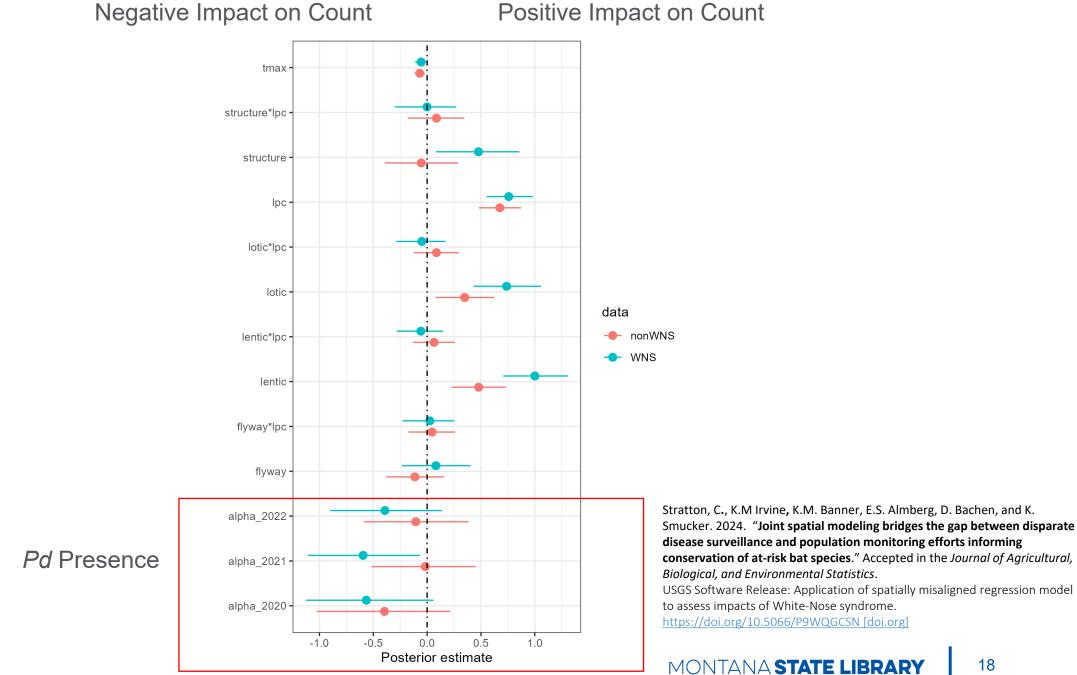


#### Shortcomings

- Failure to acknowledge/propagate the uncertainty in *Pd* occurrence through to the activity model, potentially resulting in overprecise estimates of the effect of Pd on activity
- Failure to leverage the joint information contained in the activity and Pd data, resulting in a loss of precision on the Pd occurrence estimates

#### Solution

 Jointly model the count and Pd data in one coherent modeling framework, allowing for propagation of the uncertainty in the disease process through to the activity process


### Covariates

#### **Relative activity model**

- Site type
  - Flyway
  - Lentic water
  - Lotic water
  - Roosting structure
  - Other
- Maximum daily temperature
- Count of previous night's detections
- Interaction between site type and previous night's detections
- Probability of Pd presence

#### Pd spread model

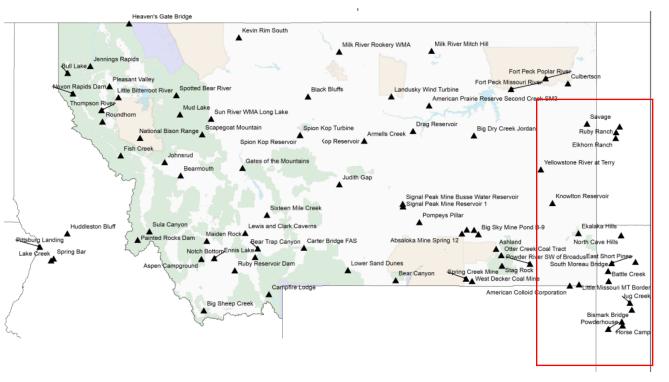
- Third degree spatial polynomial
  - $\begin{array}{l} -\sim lat+lon+lat^2+lon^2+lat*\\ lon^2+lon*lat^2+lat^3+lon^3 \end{array}$
  - Spatial random effect
    - Drawn from a Gaussian process with a double exponential covariance structure



#### 

## Conclusions

- *Pd* presence is impacting susceptible bat species in our region
- Declines are from eastern MT with few caves and mines so non-cave/mine hibernacula may be impacted by WNS
- Further exploration of models that can account for error in auto-classifed species identifications will help explore population trajectories for impacted species


### Future Work

- Plan to run the NABat grid through at least summer 2026
- Collect additional data to inform species specific activity models
  - Record flight calls to inform dynamic confusion matrix between Myotis species.
  - Move toward species-specific activity models
- Goals:
  - Capture Pd/ WNS impacts through the period of peak impact
  - Explore changes to occupancy and activity through impact period
  - Update trend used in Conservation Status Ranks (S Ranks) and maintain accurate Species of Concern designations for all bat species
  - Provide data for National NABat analyses, USFWS Species Status Assessments (SSAs)
  - Provide data for implementation of conservation efforts (habitat-based, vaccines etc.)

### Additional Data that may be of interest

#### Historic Acoustic Data

- Push to NABat portal
- Summaries Available:
- https://mtnhp.org/Reports/ZOO\_Bat\_Acousti c\_Directory\_Bachen2020.pdf
- Analyze SE Montana/ NW SD for Tri-colored Bat presence
  - Sioux District and Dakota
    Prairie Grassland
- Push Capture Data to NABat portal
  - 1989-2019 submitted
  - -2021-2024 winter 2024



## Thanks to Partners and Volunteers!















